day-night loop, dynamic skybox, clock on debug panel

This commit is contained in:
MihailRis 2023-11-28 11:01:22 +03:00
parent 4a9a4ddd14
commit c08c31b0ad
24 changed files with 599 additions and 48 deletions

View File

@ -0,0 +1,11 @@
#version 330 core
in vec3 v_coord;
out vec4 f_color;
uniform samplerCube u_cubemap;
void main(){
vec3 dir = normalize(v_coord);
f_color = texture(u_cubemap, dir);
}

View File

@ -0,0 +1,14 @@
#version 330 core
layout (location = 0) in vec2 v_position;
out vec3 v_coord;
uniform mat4 u_view;
uniform float u_ar;
uniform float u_zoom;
void main(){
v_coord = (vec4(v_position*vec2(u_ar, 1.0f)*u_zoom, -1.0, 1.0) * u_view).xyz;
gl_Position = vec4(v_position, 0.0, 1.0);
}

View File

@ -3,20 +3,23 @@
in vec4 a_color;
in vec2 a_texCoord;
in float a_distance;
in vec3 a_dir;
out vec4 f_color;
uniform sampler2D u_texture0;
uniform samplerCube u_cubemap;
uniform vec3 u_fogColor;
uniform float u_fogFactor;
uniform float u_fogCurve;
void main(){
vec3 fogColor = texture(u_cubemap, a_dir).rgb;
vec4 tex_color = texture(u_texture0, a_texCoord);
float depth = (a_distance/256.0);
float alpha = a_color.a * tex_color.a;
// anyway it's any alpha-test alternative required
if (alpha < 0.1f)
discard;
f_color = mix(a_color * tex_color, vec4(u_fogColor,1.0), min(1.0, pow(depth*u_fogFactor, u_fogCurve)));
f_color = mix(a_color * tex_color, vec4(fogColor,1.0), min(1.0, pow(depth*u_fogFactor, u_fogCurve)));
f_color.a = alpha;
}

View File

@ -7,6 +7,7 @@ layout (location = 2) in float v_light;
out vec4 a_color;
out vec2 a_texCoord;
out float a_distance;
out vec3 a_dir;
uniform mat4 u_model;
uniform mat4 u_proj;
@ -14,10 +15,13 @@ uniform mat4 u_view;
uniform vec3 u_skyLightColor;
uniform vec3 u_cameraPos;
uniform float u_gamma;
uniform samplerCube u_cubemap;
uniform vec3 u_torchlightColor;
uniform float u_torchlightDistance;
#define SKY_LIGHT_MUL 2.5
vec4 decompress_light(float compressed_light) {
vec4 result;
int compressed = floatBitsToInt(compressed_light);
@ -30,15 +34,22 @@ vec4 decompress_light(float compressed_light) {
void main(){
vec2 pos2d = (u_model * vec4(v_position, 1.0)).xz-u_cameraPos.xz;
vec4 modelpos = u_model * vec4(v_position+vec3(0,pow(length(pos2d)*0.0, 3.0),0), 1.0);
vec4 modelpos = u_model * vec4(v_position, 1.0);
vec4 viewmodelpos = u_view * modelpos;
vec4 decomp_light = decompress_light(v_light);
vec3 light = decomp_light.rgb;
float torchlight = max(0.0, 1.0-distance(u_cameraPos, modelpos.xyz)/u_torchlightDistance);
a_dir = modelpos.xyz - u_cameraPos;
light += torchlight * u_torchlightColor;
a_color = vec4(pow(light, vec3(u_gamma)),1.0f);
a_texCoord = v_texCoord;
a_color.rgb = max(a_color.rgb, u_skyLightColor.rgb*decomp_light.a);
vec3 skyLightColor = texture(u_cubemap, vec3(-0.4f, -0.4f, -0.4f)).rgb;
skyLightColor.g *= 0.9;
skyLightColor.b *= 0.8;
skyLightColor = min(vec3(1.0), skyLightColor*SKY_LIGHT_MUL);
a_color.rgb = max(a_color.rgb, skyLightColor.rgb*decomp_light.a);
a_distance = length(viewmodelpos);
gl_Position = u_proj * viewmodelpos;
}

View File

@ -1,10 +0,0 @@
#version 330 core
in vec2 v_coord;
out vec4 f_color;
uniform sampler2D u_texture;
void main(){
f_color = texture(u_texture, v_coord);
}

View File

@ -0,0 +1,291 @@
/*
MIT License
Copyright (c) 2019 Dimas Leenman
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#version 330 core
// first, lets define some constants to use (planet radius, position, and scattering coefficients)
#define PLANET_POS vec3(0.0) /* the position of the planet */
#define PLANET_RADIUS 6371e3 /* radius of the planet */
#define ATMOS_RADIUS 6471e3 /* radius of the atmosphere */
// scattering coeffs
#define RAY_BETA vec3(5.5e-6, 13.0e-6, 22.4e-6) /* rayleigh, affects the color of the sky */
#define MIE_BETA vec3(21e-6) /* mie, affects the color of the blob around the sun */
#define AMBIENT_BETA vec3(0.0) /* ambient, affects the scattering color when there is no lighting from the sun */
#define ABSORPTION_BETA vec3(2.04e-5, 4.97e-5, 1.95e-6) /* what color gets absorbed by the atmosphere (Due to things like ozone) */
#define G 0.9 /* mie scattering direction, or how big the blob around the sun is */
// and the heights (how far to go up before the scattering has no effect)
#define HEIGHT_RAY 8e3 /* rayleigh height */
#define HEIGHT_MIE 1.2e3 /* and mie */
#define HEIGHT_ABSORPTION 30e3 /* at what height the absorption is at it's maximum */
#define ABSORPTION_FALLOFF 4e3 /* how much the absorption decreases the further away it gets from the maximum height */
// and the steps (more looks better, but is slower)
// the primary step has the most effect on looks
#define PRIMARY_STEPS 12
#define LIGHT_STEPS 4
vec3 calculate_scattering(
vec3 start, // the start of the ray (the camera position)
vec3 dir, // the direction of the ray (the camera vector)
float max_dist, // the maximum distance the ray can travel (because something is in the way, like an object)
vec3 scene_color, // the color of the scene
vec3 light_dir, // the direction of the light
vec3 light_intensity, // how bright the light is, affects the brightness of the atmosphere
vec3 planet_position, // the position of the planet
float planet_radius, // the radius of the planet
float atmo_radius, // the radius of the atmosphere
vec3 beta_ray, // the amount rayleigh scattering scatters the colors (for earth: causes the blue atmosphere)
vec3 beta_mie, // the amount mie scattering scatters colors
vec3 beta_absorption, // how much air is absorbed
vec3 beta_ambient, // the amount of scattering that always occurs, cna help make the back side of the atmosphere a bit brighter
float g, // the direction mie scatters the light in (like a cone). closer to -1 means more towards a single direction
float height_ray, // how high do you have to go before there is no rayleigh scattering?
float height_mie, // the same, but for mie
float height_absorption, // the height at which the most absorption happens
float absorption_falloff, // how fast the absorption falls off from the absorption height
int steps_i, // the amount of steps along the 'primary' ray, more looks better but slower
int steps_l // the amount of steps along the light ray, more looks better but slower
) {
// add an offset to the camera position, so that the atmosphere is in the correct position
start -= planet_position;
// calculate the start and end position of the ray, as a distance along the ray
// we do this with a ray sphere intersect
float a = dot(dir, dir);
float b = 2.0 * dot(dir, start);
float c = dot(start, start) - (atmo_radius * atmo_radius);
float d = (b * b) - 4.0 * a * c;
// stop early if there is no intersect
if (d < 0.0) return scene_color;
// calculate the ray length
vec2 ray_length = vec2(
max((-b - sqrt(d)) / (2.0 * a), 0.0),
min((-b + sqrt(d)) / (2.0 * a), max_dist)
);
// if the ray did not hit the atmosphere, return a black color
if (ray_length.x > ray_length.y) return scene_color;
// prevent the mie glow from appearing if there's an object in front of the camera
bool allow_mie = max_dist > ray_length.y;
// make sure the ray is no longer than allowed
ray_length.y = min(ray_length.y, max_dist);
ray_length.x = max(ray_length.x, 0.0);
// get the step size of the ray
float step_size_i = (ray_length.y - ray_length.x) / float(steps_i);
// next, set how far we are along the ray, so we can calculate the position of the sample
// if the camera is outside the atmosphere, the ray should start at the edge of the atmosphere
// if it's inside, it should start at the position of the camera
// the min statement makes sure of that
float ray_pos_i = ray_length.x + step_size_i * 0.5;
// these are the values we use to gather all the scattered light
vec3 total_ray = vec3(0.0); // for rayleigh
vec3 total_mie = vec3(0.0); // for mie
// initialize the optical depth. This is used to calculate how much air was in the ray
vec3 opt_i = vec3(0.0);
// also init the scale height, avoids some vec2's later on
vec2 scale_height = vec2(height_ray, height_mie);
// Calculate the Rayleigh and Mie phases.
// This is the color that will be scattered for this ray
// mu, mumu and gg are used quite a lot in the calculation, so to speed it up, precalculate them
float mu = dot(dir, light_dir);
float mumu = mu * mu;
float gg = g * g;
float phase_ray = 3.0 / (50.2654824574 /* (16 * pi) */) * (1.0 + mumu);
float phase_mie = allow_mie ? 3.0 / (25.1327412287 /* (8 * pi) */) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg)) : 0.0;
// now we need to sample the 'primary' ray. this ray gathers the light that gets scattered onto it
for (int i = 0; i < steps_i; ++i) {
// calculate where we are along this ray
vec3 pos_i = start + dir * ray_pos_i;
// and how high we are above the surface
float height_i = length(pos_i) - planet_radius;
// now calculate the density of the particles (both for rayleigh and mie)
vec3 density = vec3(exp(-height_i / scale_height), 0.0);
// and the absorption density. this is for ozone, which scales together with the rayleigh,
// but absorbs the most at a specific height, so use the sech function for a nice curve falloff for this height
// clamp it to avoid it going out of bounds. This prevents weird black spheres on the night side
float denom = (height_absorption - height_i) / absorption_falloff;
density.z = (1.0 / (denom * denom + 1.0)) * density.x;
// multiply it by the step size here
// we are going to use the density later on as well
density *= step_size_i;
// Add these densities to the optical depth, so that we know how many particles are on this ray.
opt_i += density;
// Calculate the step size of the light ray.
// again with a ray sphere intersect
// a, b, c and d are already defined
a = dot(light_dir, light_dir);
b = 2.0 * dot(light_dir, pos_i);
c = dot(pos_i, pos_i) - (atmo_radius * atmo_radius);
d = (b * b) - 4.0 * a * c;
// no early stopping, this one should always be inside the atmosphere
// calculate the ray length
float step_size_l = (-b + sqrt(d)) / (2.0 * a * float(steps_l));
// and the position along this ray
// this time we are sure the ray is in the atmosphere, so set it to 0
float ray_pos_l = step_size_l * 0.5;
// and the optical depth of this ray
vec3 opt_l = vec3(0.0);
// now sample the light ray
// this is similar to what we did before
for (int l = 0; l < steps_l; ++l) {
// calculate where we are along this ray
vec3 pos_l = pos_i + light_dir * ray_pos_l;
// the heigth of the position
float height_l = length(pos_l) - planet_radius;
// calculate the particle density, and add it
// this is a bit verbose
// first, set the density for ray and mie
vec3 density_l = vec3(exp(-height_l / scale_height), 0.0);
// then, the absorption
float denom = (height_absorption - height_l) / absorption_falloff;
density_l.z = (1.0 / (denom * denom + 1.0)) * density_l.x;
// multiply the density by the step size
density_l *= step_size_l;
// and add it to the total optical depth
opt_l += density_l;
// and increment where we are along the light ray.
ray_pos_l += step_size_l;
}
// Now we need to calculate the attenuation
// this is essentially how much light reaches the current sample point due to scattering
vec3 attn = exp(-beta_ray * (opt_i.x + opt_l.x) - beta_mie * (opt_i.y + opt_l.y) - beta_absorption * (opt_i.z + opt_l.z));
// accumulate the scattered light (how much will be scattered towards the camera)
total_ray += density.x * attn;
total_mie += density.y * attn;
// and increment the position on this ray
ray_pos_i += step_size_i;
}
// calculate how much light can pass through the atmosphere
vec3 opacity = exp(-(beta_mie * opt_i.y + beta_ray * opt_i.x + beta_absorption * opt_i.z));
// calculate and return the final color
return (
phase_ray * beta_ray * total_ray // rayleigh color
+ phase_mie * beta_mie * total_mie // mie
+ opt_i.x * beta_ambient // and ambient
) * light_intensity + scene_color * opacity; // now make sure the background is rendered correctly
}
vec2 ray_sphere_intersect(
vec3 start, // starting position of the ray
vec3 dir, // the direction of the ray
float radius // and the sphere radius
) {
// ray-sphere intersection that assumes
// the sphere is centered at the origin.
// No intersection when result.x > result.y
float a = dot(dir, dir);
float b = 2.0 * dot(dir, start);
float c = dot(start, start) - (radius * radius);
float d = (b*b) - 4.0*a*c;
if (d < 0.0) return vec2(1e5,-1e5);
return vec2(
(-b - sqrt(d))/(2.0*a),
(-b + sqrt(d))/(2.0*a)
);
}
in vec2 v_coord;
out vec4 f_color;
uniform vec3 u_xaxis;
uniform vec3 u_yaxis;
uniform vec3 u_zaxis;
uniform vec3 u_lightDir;
uniform int u_quality;
uniform float u_mie;
void main() {
vec3 camera_position = vec3(0.0f, PLANET_RADIUS+1.0f, 0.0f);
vec3 camera_vector = normalize(u_xaxis * v_coord.x +
u_yaxis * -v_coord.y -
u_zaxis);
// hide darkness at horizon
camera_vector.y = max(0.01, camera_vector.y)*(1.0-u_mie*0.08) + 0.08*u_mie;
camera_vector = normalize(camera_vector);
// the color of this pixel
vec3 col = vec3(0.0);//scene.xyz;
// get the atmosphere color
col += calculate_scattering(
camera_position, // the position of the camera
camera_vector, // the camera vector (ray direction of this pixel)
1e12f, // max dist, essentially the scene depth
vec3(0.0f), // scene color, the color of the current pixel being rendered
u_lightDir, // light direction
vec3(40.0), // light intensity, 40 looks nice
PLANET_POS, // position of the planet
PLANET_RADIUS, // radius of the planet in meters
ATMOS_RADIUS, // radius of the atmosphere in meters
RAY_BETA, // Rayleigh scattering coefficient
MIE_BETA, // Mie scattering coefficient
ABSORPTION_BETA, // Absorbtion coefficient
AMBIENT_BETA, // ambient scattering, turned off for now. This causes the air to glow a bit when no light reaches it
G, // Mie preferred scattering direction
HEIGHT_RAY, // Rayleigh scale height
HEIGHT_MIE*u_mie*u_mie, // Mie scale height
HEIGHT_ABSORPTION, // the height at which the most absorption happens
ABSORPTION_FALLOFF, // how fast the absorption falls off from the absorption height
PRIMARY_STEPS*u_quality, // steps in the ray direction
LIGHT_STEPS*u_quality // steps in the light direction
);
// apply exposure, removing this makes the brighter colors look ugly
// you can play around with removing this
col = 1.0 - exp(-col);
// Output to screen
f_color = vec4(col, 1.0);
}

View File

@ -1,10 +1,10 @@
#version 330 core
layout (location = 0) in vec2 v_position;
out vec2 v_coord;
void main(){
v_coord = v_position*0.5+0.5;
gl_Position = vec4(v_position, 0.0, 1.0);
}
#version 330 core
layout (location = 0) in vec2 v_position;
out vec2 v_coord;
void main(){
v_coord = v_position;
gl_Position = vec4(v_position, 0.0, 1.0);
}

View File

@ -110,6 +110,8 @@ void AssetsLoader::addDefaults(AssetsLoader& loader) {
loader.add(ASSET_SHADER, resdir/path(SHADERS_FOLDER"/main"), "main");
loader.add(ASSET_SHADER, resdir/path(SHADERS_FOLDER"/lines"), "lines");
loader.add(ASSET_SHADER, resdir/path(SHADERS_FOLDER"/ui"), "ui");
loader.add(ASSET_SHADER, resdir/path(SHADERS_FOLDER"/background"), "background");
loader.add(ASSET_SHADER, resdir/path(SHADERS_FOLDER"/skybox_gen"), "skybox_gen");
loader.add(ASSET_ATLAS, resdir/path(TEXTURES_FOLDER"/blocks"), "blocks");
loader.add(ASSET_TEXTURE, resdir/path(TEXTURES_FOLDER"/menubg.png"), "menubg");

View File

@ -27,6 +27,7 @@
#define PLAYER_FLAG_NOCLIP 0x2
#define WORLD_SECTION_MAIN 1
#define WORLD_SECTION_DAYNIGHT 2
using glm::ivec2;
using glm::vec3;
@ -235,11 +236,15 @@ void WorldFiles::writeWorldInfo(const WorldInfo& info) {
BinaryWriter out;
out.putCStr(WORLD_FORMAT_MAGIC);
out.put(WORLD_FORMAT_VERSION);
out.put(WORLD_SECTION_MAIN);
out.putInt64(info.seed);
out.put(info.name);
out.put(WORLD_SECTION_DAYNIGHT);
out.putFloat32(info.daytime);
out.putFloat32(info.daytimeSpeed);
files::write_bytes(getWorldFile(), (const char*)out.data(), out.size());
}
@ -260,6 +265,10 @@ bool WorldFiles::readWorldInfo(WorldInfo& info) {
info.seed = inp.getInt64();
info.name = inp.getString();
break;
case WORLD_SECTION_DAYNIGHT:
info.daytime = inp.getFloat32();
info.daytimeSpeed = inp.getFloat32();
break;
}
}
return false;

View File

@ -36,6 +36,8 @@ struct WorldInfo {
std::string name;
std::filesystem::path directory;
uint64_t seed;
float daytime;
float daytimeSpeed;
};
class WorldFiles {

View File

@ -0,0 +1,111 @@
#include "Skybox.h"
#include <GL/glew.h>
#include <iostream>
#include <glm/glm.hpp>
#include "../../graphics/Shader.h"
#include "../../graphics/Mesh.h"
#include "../../window/Window.h"
using glm::vec3;
Skybox::Skybox(uint size, Shader* shader) : size(size), shader(shader) {
glGenTextures(1, &cubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
for (uint face = 0; face < 6; face++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
}
glGenFramebuffers(1, &fbo);
float vertices[] {
-1.0f, -1.0f, -1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f
};
vattr attrs[] {2, 0};
mesh = new Mesh(vertices, 6, attrs);
}
Skybox::~Skybox() {
glDeleteTextures(1, &cubemap);
glDeleteFramebuffers(1, &fbo);
delete mesh;
}
void Skybox::draw(Shader* shader) {
shader->uniform1i("u_cubemap", 1);
bind();
mesh->draw();
unbind();
}
void Skybox::refresh(float t, float mie, uint quality) {
ready = true;
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap);
shader->use();
Window::viewport(0,0, size,size);
const vec3 xaxs[] = {
{0.0f, 0.0f, -1.0f},
{0.0f, 0.0f, 1.0f},
{-1.0f, 0.0f, 0.0f},
{-1.0f, 0.0f, 0.0f},
{-1.0f, 0.0f, 0.0f},
{1.0f, 0.0f, 0.0f},
};
const vec3 yaxs[] = {
{0.0f, 1.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, -1.0f},
{0.0f, 0.0f, 1.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
};
const vec3 zaxs[] = {
{1.0f, 0.0f, 0.0f},
{-1.0f, 0.0f, 0.0f},
{0.0f, -1.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, -1.0f},
{0.0f, 0.0f, 1.0f},
};
t *= M_PI*2.0f;
shader->uniform1i("u_quality", quality);
shader->uniform1f("u_mie", mie);
shader->uniform3f("u_lightDir", glm::normalize(vec3(sin(t), -cos(t), 0.7f)));
for (uint face = 0; face < 6; face++) {
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, cubemap, 0);
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
shader->uniform3f("u_xaxis", xaxs[face]);
shader->uniform3f("u_yaxis", yaxs[face]);
shader->uniform3f("u_zaxis", zaxs[face]);
mesh->draw(GL_TRIANGLES);
}
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
glActiveTexture(GL_TEXTURE0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
Window::viewport(0, 0, Window::width, Window::height);
}
void Skybox::bind() const {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, cubemap);
glActiveTexture(GL_TEXTURE0);
}
void Skybox::unbind() const {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
glActiveTexture(GL_TEXTURE0);
}

View File

@ -0,0 +1,30 @@
#ifndef FRONTEND_GRAPHICS_SKYBOX_H_
#define FRONTEND_GRAPHICS_SKYBOX_H_
#include "../../typedefs.h"
class Mesh;
class Shader;
class Skybox {
uint fbo;
uint cubemap;
uint size;
Mesh* mesh;
Shader* shader;
bool ready = false;
public:
Skybox(uint size, Shader* shader);
~Skybox();
void draw(Shader* shader);
void refresh(float t, float mie, uint quality);
void bind() const;
void unbind() const;
bool isReady() const {
return ready;
}
};
#endif // FRONTEND_GRAPHICS_SKYBOX_H_

View File

@ -11,6 +11,7 @@
#include "../typedefs.h"
#include "../content/Content.h"
#include "../util/stringutil.h"
#include "../util/timeutil.h"
#include "../assets/Assets.h"
#include "../graphics/Shader.h"
#include "../graphics/Batch2D.h"
@ -128,13 +129,22 @@ HudRenderer::HudRenderer(Engine* engine,
sub->add(box);
panel->add(sub);
}
panel->add(shared_ptr<Label>(create_label([this](){
int hour, minute, second;
timeutil::from_value(this->level->world->daytime, hour, minute, second);
std::wstring timeString =
util::lfill(std::to_wstring(hour), 2, L'0') + L":" +
util::lfill(std::to_wstring(minute), 2, L'0');
return L"time: "+timeString;
})));
{
TrackBar* bar = new TrackBar(0.0f, 1.0f, 1.0f, 0.02f, 2);
TrackBar* bar = new TrackBar(0.0f, 1.0f, 1.0f, 0.005f, 8);
bar->supplier([=]() {
return renderer->skyLightMutliplier;
return level->world->daytime;
});
bar->consumer([=](double val) {
renderer->skyLightMutliplier = val;
level->world->daytime = val;
});
panel->add(bar);
}

View File

@ -136,6 +136,9 @@ void LevelScreen::update(float delta) {
level->chunks->saveAndClear();
backlight = settings.graphics.backlight;
}
if (!hud->isPause()) {
level->world->updateTimers(delta);
}
level->updatePlayer(delta, !inputLocked, hud->isPause(), !inputLocked);
level->update();

View File

@ -28,6 +28,7 @@
#include "../settings.h"
#include "../engine.h"
#include "ContentGfxCache.h"
#include "graphics/Skybox.h"
using glm::vec3;
using std::string;
@ -35,15 +36,19 @@ using std::shared_ptr;
WorldRenderer::WorldRenderer(Engine* engine, Level* level, const ContentGfxCache* cache)
: engine(engine), level(level) {
EngineSettings& settings = engine->getSettings();
lineBatch = new LineBatch(4096);
renderer = new ChunksRenderer(level, cache, engine->getSettings());
renderer = new ChunksRenderer(level, cache, settings);
frustumCulling = new Frustum();
level->events->listen(EVT_CHUNK_HIDDEN, [this](lvl_event_type type, Chunk* chunk) {
renderer->unload(chunk);
});
skybox = new Skybox(64, engine->getAssets()->getShader("skybox_gen"));
}
WorldRenderer::~WorldRenderer() {
delete skybox;
delete lineBatch;
delete renderer;
delete frustumCulling;
@ -100,6 +105,10 @@ void WorldRenderer::drawChunks(Chunks* chunks,
void WorldRenderer::draw(const GfxContext& pctx, Camera* camera, bool occlusion){
EngineSettings& settings = engine->getSettings();
skybox->refresh(level->world->daytime,
fmax(1.0f, 18.0f/settings.chunks.loadDistance), 4);
const Content* content = level->content;
const ContentIndices* contentIds = content->indices;
Assets* assets = engine->getAssets();
@ -110,32 +119,32 @@ void WorldRenderer::draw(const GfxContext& pctx, Camera* camera, bool occlusion)
const Viewport& viewport = pctx.getViewport();
int displayWidth = viewport.getWidth();
int displayHeight = viewport.getHeight();
Window::clearDepth();
Window::viewport(0, 0, displayWidth, displayHeight);
Shader* backShader = assets->getShader("background");
backShader->use();
backShader->uniformMatrix("u_view", camera->getView(false));
backShader->uniform1f("u_zoom", camera->zoom);
backShader->uniform1f("u_ar", (float)Window::width/(float)Window::height);
skybox->draw(backShader);
{
GfxContext ctx = pctx.sub();
ctx.depthTest(true);
ctx.cullFace(true);
EngineSettings& settings = engine->getSettings();
vec3 skyColor(0.7f, 0.81f, 1.0f);
skyColor *= skyLightMutliplier;
Window::setBgColor(skyColor);
Window::clear();
Window::viewport(0, 0, displayWidth, displayHeight);
float fogFactor = 18.0f / (float)settings.chunks.loadDistance;
shader->use();
skybox->bind();
shader->uniformMatrix("u_proj", camera->getProjection());
shader->uniformMatrix("u_view", camera->getView());
shader->uniform1f("u_gamma", 1.0f);
shader->uniform3f("u_skyLightColor", vec3(1.1f) * skyLightMutliplier);
shader->uniform3f("u_fogColor", skyColor);
shader->uniform1f("u_fogFactor", fogFactor);
shader->uniform1f("u_fogCurve", settings.graphics.fogCurve);
shader->uniform3f("u_cameraPos", camera->position);
shader->uniform1i("u_cubemap", 1);
Block* cblock = contentIds->getBlockDef(level->player->choosenBlock);
assert(cblock != nullptr);
@ -168,6 +177,7 @@ void WorldRenderer::draw(const GfxContext& pctx, Camera* camera, bool occlusion)
}
lineBatch->render();
}
skybox->unbind();
}
if (level->player->debug) {
@ -175,7 +185,7 @@ void WorldRenderer::draw(const GfxContext& pctx, Camera* camera, bool occlusion)
ctx.depthTest(true);
linesShader->use();
if (engine->getSettings().debug.showChunkBorders){
if (settings.debug.showChunkBorders){
linesShader->uniformMatrix("u_projview", camera->getProjView());
vec3 coord = level->player->camera->position;
if (coord.x < 0) coord.x--;

View File

@ -22,6 +22,7 @@ class Frustum;
class Engine;
class Chunks;
class ContentGfxCache;
class Skybox;
class WorldRenderer {
Engine* engine;
@ -29,11 +30,10 @@ class WorldRenderer {
Frustum* frustumCulling;
LineBatch* lineBatch;
ChunksRenderer* renderer;
Skybox* skybox;
bool drawChunk(size_t index, Camera* camera, Shader* shader, bool occlusion);
void drawChunks(Chunks* chunks, Camera* camera, Shader* shader, bool occlusion);
public:
float skyLightMutliplier = 1.0f; // will be replaced with day-night cycle
WorldRenderer(Engine* engine, Level* level, const ContentGfxCache* cache);
~WorldRenderer();

14
src/util/timeutil.cpp Normal file
View File

@ -0,0 +1,14 @@
#include "timeutil.h"
float timeutil::time_value(float hour, float minute, float second) {
return (hour + (minute + second / 60.0f) / 60.0f) / 24.0f;
}
void timeutil::from_value(float value, int& hour, int& minute, int& second) {
value *= 24;
hour = value;
value *= 60;
minute = int(value) % 60;
value *= 60;
second = int(value) % 60;
}

9
src/util/timeutil.h Normal file
View File

@ -0,0 +1,9 @@
#ifndef UTIL_TIMEUTIL_H_
#define UTIL_TIMEUTIL_H_
namespace timeutil {
float time_value(float hour, float minute, float second);
void from_value(float value, int& hour, int& minute, int& second);
}
#endif // UTIL_TIMEUTIL_H_

View File

@ -42,11 +42,16 @@ mat4 Camera::getProjection(){
return glm::ortho(0.0f, fov*aspect, 0.0f, fov);
}
mat4 Camera::getView(){
if (perspective)
mat4 Camera::getView(bool pos){
vec3 position = this->position;
if (!pos) {
position = vec3(0.0f);
}
if (perspective) {
return glm::lookAt(position, position+front, up);
else
} else {
return glm::translate(glm::mat4(1.0f), position);
}
}
mat4 Camera::getProjView(){

View File

@ -24,7 +24,7 @@ public:
void rotate(float x, float y, float z);
mat4 getProjection();
mat4 getView();
mat4 getView(bool position=true);
mat4 getProjView();
};

View File

@ -127,6 +127,10 @@ int Window::initialize(DisplaySettings& settings){
glfwSetWindowMonitor(window, monitor, 0, 0, mode->width, mode->height, GLFW_DONT_CARE);
}
glfwSwapInterval(settings.swapInterval);
const GLubyte* vendor = glGetString(GL_VENDOR);
const GLubyte* renderer = glGetString(GL_RENDERER);
std::cout << "GL Vendor: " << (char*)vendor << std::endl;
std::cout << "GL Renderer: " << (char*)renderer << std::endl;
return 0;
}
@ -134,6 +138,10 @@ void Window::clear() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void Window::clearDepth() {
glClear(GL_DEPTH_BUFFER_BIT);
}
void Window::setBgColor(glm::vec3 color) {
glClearColor(color.r, color.g, color.b, 1.0f);
}
@ -252,6 +260,7 @@ DisplaySettings* Window::getSettings() {
ImageData* Window::takeScreenshot() {
ubyte* data = new ubyte[width * height * 3];
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, data);
return new ImageData(ImageFormat::rgb888, width, height, data);
}

View File

@ -44,6 +44,7 @@ public:
static void resetScissor();
static void clear();
static void clearDepth();
static void setBgColor(glm::vec3 color);
static double time();
static DisplaySettings* getSettings();

View File

@ -29,6 +29,11 @@ World::~World(){
delete wfile;
}
void World::updateTimers(float delta) {
daytime += delta * daytimeSpeed;
daytime = fmod(daytime, 1.0f);
}
void World::write(Level* level) {
const Content* content = level->content;
@ -41,15 +46,17 @@ void World::write(Level* level) {
wfile->put(chunk.get());
}
wfile->write(WorldInfo {name, wfile->directory, seed}, content);
wfile->write(WorldInfo {name, wfile->directory, seed, daytime, daytimeSpeed}, content);
wfile->writePlayer(level->player);
}
Level* World::load(EngineSettings& settings, const Content* content) {
WorldInfo info {name, wfile->directory, seed};
WorldInfo info {name, wfile->directory, seed, daytime, daytimeSpeed};
wfile->readWorldInfo(info);
seed = info.seed;
name = info.name;
daytime = info.daytime;
daytimeSpeed = info.daytimeSpeed;
vec3 playerPosition = vec3(0, 100, 0);
Camera* camera = new Camera(playerPosition, glm::radians(90.0f));

View File

@ -5,6 +5,7 @@
#include <filesystem>
#include "../typedefs.h"
#include "../settings.h"
#include "../util/timeutil.h"
class Content;
class WorldFiles;
@ -18,12 +19,20 @@ public:
WorldFiles* wfile;
uint64_t seed;
/* Day/night loop timer in range 0..1
0.0 - is midnight
0.5 - is noon
*/
float daytime = timeutil::time_value(10, 00, 00);
float daytimeSpeed = 1.0f/60.0f/24.0f;
World(std::string name,
std::filesystem::path directory,
uint64_t seed,
EngineSettings& settings);
~World();
void updateTimers(float delta);
void write(Level* level);
Level* load(EngineSettings& settings, const Content* content);
};